Espacio publicitario
SáBado 25 de mayo de 2019
Buscador de noticias
Encuentre toda la informacion que necesita en mas de 23 años de archivo
Espacio publicitario
Tecnología

Descubren la dificultad de monetizar Big Data

Hace algunos años se aseguraba que Big Data sería la salvación de las grandes empresas.

mié 3 de octubre de 2018
Comentarios: (0)

Galeria de imagenes
Anterior
Ampliar
Siguiente
Descubren la dificultad de monetizar Big Data

Cuando Big Data era novedad – mucho antes de que se comenzara a hablar de inteligencia artificial – se decía que era el camino más seguro hacia el éxito económico. Pasados ya algunos años muchas descubren que extraer valor de toda esa montaña de datos no es tan fácil como parecía. Esa promesa está todavía bastante lejos de cumplirse. ¿Por qué es tan difícil?

Anant Gupta, CEO of HCL Technologies, dice que por tres factores.

El primero él lo llama el de las tres V: volumen, velocidad y variedad.

Todo es tremendo: el volumen,  la velocidad a la que hay que procesar los datos y la variedad de tipos de datos. Las dos primeras características son obvias. La tercera es la más problemática. Evaluar el valor de big data requiere análisis simultáneo de diferentes tipos de información: transacciones, datos de logueo, interacción de redes sociales, datos de máquina, datos geoespaciales, datos d de audio y demás.  Mucho de todo eso es no estructurado.  Lo datos que tradicionalmente manejaban las empresas eran estructurados y podían ser analizados automáticamente. En cambio la mayor parte de los datos en big data son no estructurados, como una sesión de chateo entre cliente y representante de ventas.  Sintetizar se tipo de información de muchas fuentes y extraer información relevante  es a la vez un arte y una ciencia.

Escasez de talento

Faltan, en general, analistas especializados y gerentes capaces de trabajar con big data y tomar decisiones basadas en esos descubrimientos.

Mal manejo de los datos

El hecho de contar con big data, o sea mucha cantidad de datos, no soluciona el problema de malas prácticas en el manejo de la información.  Sin sólidas estructuras de manejo y sin actualización de los sistemas para manejar grandes volúmenes de datos, el sistema colapsa.

 

Ausencia de conocimientos técnicos

Big data representa una convergencia entre IT y ciencia de datos. Por un lado, tecnologías que permiten procesar varios conjuntos de datos, un lenguaje de programación para estadísticas y base de datos en el interior de la memoria, que es donde  residen los datos  en la memoria principal y no en disco. Por el otro, ciencia de datos incluye máquinas inteligentes y almacenamiento de datos. Los profesionales en esto deben conocer ambas disciplinas, pero esta combinación es rara, a pesar de que están surgiendo cursos n todo el mundo.

 

Comentarios de los lectores
Espacio publicitario
Espacio publicitario
Espacio publicitario
Espacio publicitario
Espacio publicitario
Espacio publicitario
Espacio publicitario
Espacio publicitario
Últimos Tweets